

Remarkable Effects of Terminal Groups and Solvents on Helical Folding of *o*-Phenylene Oligomers

Shinji Ando,[†] Eisuke Ohta,[†] Atsuko Kosaka,[†] Daisuke Hashizume,[†] Hiroyuki Koshino,[†] Takanori Fukushima,[†],*,[‡] and Takuzo Aida^{*,†,§}

[†]RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

[‡]Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan [§]School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Supporting Information

ABSTRACT: Although *o*-phenylene oligomers (OP_{*n*}R) made of dimethoxyphenylene units are thought to be intrinsically dynamic due to π -electronic repulsion, we show that they fold into a regular helical geometry in CH₃CN when they carry terminal groups such as CH₃, CH₂OH, Br, CO₂Bn, and NO₂. We evaluated their helical inversion kinetics via optical resolution of long-chain oligomers (e.g. 16- and 24-mers) by chiral HPLC. OP₂₄Br at 298 K shows a half-life for the optical activity of 5.5 h in CH₃OH/water (7/3 v/v) and requires 34 h for complete racemization. The perfectly folded helical conformers of OP_{*n*}R, unlike their imperfectly folded ones, are devoid of extended π -conjugation and show a cyclic voltammogram featuring reversible multistep oxidation waves.

B ecause of the lack of readily accessible synthetic methods, oligomeric o-phenylenes, unlike their m- and p-connected analogues, have scarcely been investigated until recently.¹ Due to a heavily angled aromatic connection, oligomeric ophenylenes are considered to adopt a helical conformation. Simpkins et al. reported in 1998 that an o-phenylene hexamer in the crystalline state folds into a regular 3₁-helical geometry.¹ This beautiful crystal structure gave us a preconceived notion that 31-helical geometry is also preferred in solution. Recent conformational studies by Hartley et al. on o-phenylene oligomers in solution indicated that, regardless of the type of solvent, they are considerably dynamic and hardly fold into a regular helical geometry.² We recently developed terminally functionalized o-phenylene oligomers OP, R from 1,2-dimethoxybenzene and discovered that an octamer featuring nitro groups at both termini (OP_8NO_2) undergoes chiral symmetry breaking upon crystallization, affording optically pure crystals, each having either a right- or left-handed 31-helical conformer. Using its optical activity as a probe, we investigated the stability of this helically folded conformer in solution. Consistent with Hartley's reports,² the optical activity disappeared very quickly when the chiral crystal was dissolved in organic solvents. We thought this dynamic nature might stem from π -electronically repulsive character of the closely packed phenylene units in cofacial orientation.⁴ One-electron oxidation of the helical conformer of OP₈NO₂ resulted in a remarkable elongation of the optical activity in solution.³

Scheme 1. General Synthesis of OP, R^a

$$OP_{nt2}H$$

$$\uparrow b$$

$$OP_{n}Br \xrightarrow{C \to 0} OP_{n}CO_{2}Bn$$

$$\downarrow c - d, f$$

$$OP_{n}CH_{2}OH \xrightarrow{g} OP_{n}CH_{3}$$

^{*a*}R = H, n = 6-24; R = Br, n = 4-24; R = CH₃ and CH₂OH, n = 10; R = CO₂Bn, n = 4-10. Reagents and conditions: (a) NBS, DMF, $0 \rightarrow 25^{\circ}$ C; (b) 3,4-dimethoxyphenylboronic acid, Pd(OAc)₂, SPhos, K₃PO₄, THF, water, 60°C; (c) *t*-BuLi, THF, -78° C; (d) CO₂, $-78\rightarrow25^{\circ}$ C; (e) BnBr, Cs₂CO₃, DMSO, 100°C; (f) LiAlH₄, THF, 60°C; (g) Et₃SiH, BF₃OEt₂, CH₂Cl₂, $0\rightarrow25^{\circ}$ C. SPhos = 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl. For OP_nBr (n = 4, 8) and OP_nH (n = 16, 24), see ref 3.

If the π -electronically repulsive character indeed hampers the perfect folding of OP_nR, this potentially interesting helical motif would not be usable for many applications. We investigated in detail the conformation of OP_nR carrying different terminal groups (R = H, CH₃, CH₂OH, Br, CO₂Bn, and NO₂) in varying solvents and observed that all the oligomers except OP_nH fold into a stable helical conformation only in a limited solvent such as CH₃CN. This finding precluded investigating the helical inversion kinetics of long oligomers but also unveiled that the perfectly folded helical conformers, unlike their imperfectly folded ones,^{2a} are devoid of extended π -conjugation and well behaved in electrochemistry.

As shown in Scheme 1, a series of OP_nR (Figure 1a) with different chain lengths (n = 4-24) and termini were synthesized (see Supporting Information). OP_6H and $OP_{10}H$ were prepared from OP_4Br and OP_8Br ,³ respectively, by $Pd(OAc)_2/SPhos-catalyzed Suzuki–Miyaura coupling with 3,4$ dimethoxyphenylboronic acid in THF. The H-terminatedoligomers thus obtained were subjected to bromination with*N* $-bromosuccinimide (NBS) in DMF, affording <math>OP_6Br$ and $OP_{10}Br$. Longer H-terminated oligomers such as $OP_{16}H$ and $OP_{24}H^3$ were successfully converted into $OP_{16}Br$ and $OP_{24}Br$, respectively. OP_nCO_2Bn (n = 4-10) with ester termini were synthesized from OP_nBr (n = 4-10) by terminal lithiation in THF with *t*-BuLi, followed by carboxylation with CO_2 and

 Received:
 April 11, 2012

 Published:
 June 18, 2012

Journal of the American Chemical Society

Figure 1. (a) Molecular structures of *o*-phenylene oligomers $OP_{n}R$ (R = H, CH₃, CH₂OH, Br, CO₂Bn, and NO₂). (b) ORTEP drawings of the crystal structure of $OP_{6}CO_{2}Bn$ at 90 K, showing 50% probability thermal ellipsoids. H atoms omitted for clarity.

esterification with benzyl bromide (BnBr) in DMSO containing Cs_2CO_3 . $OP_{10}CH_2OH$ was obtained from the corresponding carboxylated compound by reduction with LiAlH₄ and converted into $OP_{10}CH_3$ by reduction using Et₃SiH/BF₃OEt₂. All these oligomers were unambiguously characterized by NMR spectroscopy and high-resolution mass spectrometry. Short-chain oligomers OP_4CO_2Bn and OP_6CO_2Bn were crystallo-graphically defined, both adopting perfect 3₁-helical conformation in the crystalline state (Figures 1b and S1).

Consistent with Hartley's reports,² the ¹H NMR spectral profiles of $OP_n CO_2 Bn$ (n = 6-10) were very complicated in a variety of solvents, e.g. $CDCl_3$, toluene- d_8 , DMSO- d_6 , and DMF-*d*₇ (Figures 2h, S3, and S8). However, in CD₃CN solvent, the NMR spectra were exceptionally simple. OP10CO2Bn afforded one set of well-defined ¹H NMR signals characteristic of C_2 symmetry (Figures 2g and S2d), indicating $OP_{10}CO_2Bn$ adopts a regular 31-helical geometry. Taking full advantage of 2D NMR techniques (HSQC, HMBC, and NOESY spectra; Figures S31-S33), all the signals in Figures 2g and S2d were unambiguously assigned. Ten singlet signals at 3.3-3.7 ppm are due to methoxy protons. Certain aromatic protons at 5.1-5.7 ppm originate from the internal phenylene units that are upfield-shifted considerably due to a ring-current effect. Strong NOEs were observed for four sets of proximal aromatic protons in folded $OP_{10}CO_2Bn$ with 3₁-helical geometry (Figure S13); the methylene protons in the benzyl ester termini split

Figure 2. ¹H NMR (500 MHz) spectra at 273 K of OP_nR .

diastereotopically into two sets of doublets at 4.48 and 4.79 ppm. In CD₃CN, OP₁₀CO₂Bn and shorter-chain OP_nCO₂Bn (n = 4, 6, and 8) showed well-defined NMR features (Figures S2 and S21-S30) characteristic of a perfect 31-helical conformation. The same holds true for the conformational behaviors of OP_nR carrying bromo (R = Br; n = 8, 10, 16, and 24), nitro (R = NO₂; n = 8), and hydroxymethyl groups (R = CH₂OH; n =10) in CD₃CN (Figures 2e,f, S4-S7, S9, S10, and S34-S37). In sharp contrast, as also Hartley reported, ^{2a-d} H-terminated OP_nH (n = 6, 10, 16, and 24) had very complicated ¹H NMR features even in CD₃CN (Figures 2a,b and S11). We thought that OP, R might require polar terminal groups for perfect helical folding, but OP₁₀CH₃ showed in CD₃CN a simple ¹H NMR spectrum (Figures 2c,d and S12a) analogous to those of OP₁₀R with polar terminal groups. Thus we conclude that a steric factor at the termini is critical in the perfect folding of OP_nR . It is interesting to note that no steric effect of the terminal functionalities emerges in other solvents (e.g. CDCl₃ and DMF; Figure S12b,c).

Figure 3. (a) ¹H NMR (500 MHz) spectra (4.6–5.2 ppm) of OP₄CO₂Bn in CD₃CN at 233–313 K. Minor signals due to imperfect helical conformation are asterisked. (b) Coalescence temperatures (red circles) and free-energy changes of activation (blue squares) for helical inversion of OP_nCO₂Bn (n = 4-8) in CD₃CN.

Using the diastereotopically split signals in the terminal benzyl ester groups as a probe, we investigated kinetic and thermodynamic aspects of the helical inversion of OP_nCO₂Bn (n = 4-8). For example, tetramer OP₄CO₂Bn at 293 K displayed the corresponding signals at 4.94 and 5.03 ppm in CD₃CN (Figures 3a and S14). Upon cooling to 233 K, each of these signals split into two major doublets and four minor signals with an integral ratio of 1:0.22 (Figure 3a). Using 2D NMR techniques (Figures S21–S23), all the signals observed at 233 K were unambiguously assigned. There are major and minor conformers in the system: the major one $(C_2$ -symmetric) adopts a perfectly folded helical conformation, while the minor one $(C_1$ -symmetric) adopts an imperfect helical conformation with one terminal phenylene unit flipping out. These conformers are thermally interconvertible. In fact, upon heating, the corresponding signals coalesced at 273 K, and the resultant major doublets coalesced at 313 K (Figure 3a) as a consequence of the helical inversion. Using the Gutowsky equation,⁵ the rate constant for the helical inversion at the coalescence temperature (313 K) was $k_c = 244 \text{ s}^{-1}$. Using the Eyring equations, the free-energy change of activation for the helical inversion was $\Delta G^{\ddagger} = 62.5 \text{ kJ mol}^{-1}$. For the hexamer and octamer (OP_nCO₂Bn, n = 6 and 8; Figures S15–S17) in CD_2CN_1 , we also obtained coalescence temperatures (T_2) and ΔG^{\ddagger} values for the helical inversion (Figure 3b and Table S1). Both increased monotonically as the number of the repeating phenylene units in OP, CO₂Bn increased (Figure 3b). This trend is reasonable, provided the helical inversion occurs in a stepwise manner from the terminal phenylene units.

These observations prompted us to investigate whether longer-chain oligomers fold into a regular helical geometry in CH₃CN. We attempted direct chiral HPLC separation⁶ of the right- and left-handed helical conformers of OP₁₆Br and OP₂₄Br along with shorter-chain OP₈Br and OP₁₀Br. By optimizing the HPLC conditions, we successfully separated their enantiomers. When OP₁₆Br in CH₃CN was charged into a chiral column and eluted using a mixture of CH₃OH and water (7/3 v/v), a poor solvent for OP₁₆Br, two well-separated elution peaks developed with positive and negative signs at 290 nm in a circular dichroism (CD) detector (Figure 4c). The fractions corresponding to these two peaks displayed mirror-image CD spectra with intensity maxima at 265, 290, and 320 nm (Figure 4e). Longer-chain OP₂₄Br showed analogous HPLC (Figure 4d) and CD features (Figure 4g). Consistent with the difference in number of the repeating phenylene units, the molar CD ($\Delta \varepsilon$) of OP₂₄Br was 1.5 times larger than that of OP₁₆Br. In both cases, the observed CD spectra gradually

Figure 4. (a–d) Chiral HPLC profiles at 298 K of OP_{*u*}Br. Samples, saturated CH₃CN solutions (5 μ L); column, CHIRALPAK IA 25 × 0.46 (i.d.) cm; eluent, CH₃OH/water (7/3 v/v);⁷ flow rate, 0.8 mL min⁻¹. CD spectra of (e) OP₁₆Br and (g) OP₂₄Br measured at the first (red) and second (blue) peak tops of their chromatograms and (f,h) their spectral decay profiles at 265 nm.

became less intense with time, indicating helical inversion. Based on time-dependent CD intensity changes (Figure 4f,h), we evaluated their helical inversion kinetics in terms of the half-life $(t_{1/2})$ of the CD intensity at 265 nm and decay rate constants (k_{inv}) . As expected from the chain length-dependent dynamic natures of OP_nCO₂Bn (n = 4-8; Figure 3b), OP₂₄Br showed longer $t_{1/2}$ (5.5 h) and smaller k_{inv} (1.75 × 10⁻⁵ s⁻¹) than OP₁₆Br (2.5 h and 3.92 × 10⁻⁵ s⁻¹) in CH₃OH/water (7/ 3 v/v) at 298 K (see Supporting Information). Notably, OP₂₄Br required 34 h for complete loss of optical activity. In contrast, shorter-chain OP₁₀Br was only partially optically resolved in chiral HPLC (Figure 4b), and OP₈Br did not show any optical resolution (Figure 4a), indicating their helical inversion events are too fast.

Perfect helical folding of OP_nR was found to be accompanied by a change in the balance between "through-bond" and "through-space" electronic interactions of the repeating phenylene units. The absorption maximum of OP_nBr in CH_2Cl_2 (Figure 5, blue) shifted toward a longer wavelength region as *n* increased from 10 to 24; such chain-length dependence was not observed when OP_nBr was allowed to fold into a perfect helical

Figure 5. Electronic absorption spectra at 298 K of OP_nBr in CH₃CN (red) and CH₂Cl₂ (blue).

Figure 6. Cyclic voltammograms at 298 K of $OP_{10}CO_2Bn$ in (a) CH_3CN and (b) CH_2Cl_2 containing n-Bu₄ $NClO_4$ (0.1 M) as a supporting electrolyte. Scan rate, 100 mV s⁻¹.

conformation in CH₃CN (red). Thus, the regularly folded ophenylene oligomers are devoid of extended π -conjugation. Also noteworthy, as exemplified by OP₁₀CO₂Bn in Figure 6, $OP_n CO_2 Bn$ and $OP_n Br$ with n = 8 and 10 in CH₃CN clearly showed reversible multistep oxidation waves in their cyclic voltammetry (CV) profiles (Figures 6a and S18); in CH₂Cl₂ their CV profiles showed a lower electrochemical reversibility (Figures 6b and S19).⁸ For reference, short-chain OP₄CO₂Bn and H-terminated $OP_{10}H$, which are incapable of folding into a perfect helical conformation, showed poor electrochemical reversibility even in CH₃CN (Figure S20). These results indicate the contrasting redox behaviors of terminally functionalized OP_nR (R = CO₂Bn and Br; n = 8 and 10) in CH₃CN and CH₂Cl₂ originate from the difference in conformational characteristics of the oligomers. The perfect helical conformation likely stabilizes an oxidized state by extensive delocalization of a hole through an array of cofacially oriented phenylene units.³ Foldamers that can change their fundamental electrochemical properties by folding are unprecedented.

In conclusion, we show that *o*-dimethoxyphenylene oligomers (OP_nR, Figure 1a) appended with terminal groups such as CH₃, CH₂OH, Br, CO₂Bn, and NO₂ adopt a perfect helical conformation in CH₃CN, where a steric rather than polar effect of the termini is responsible. In contrast, even in CH₃CN, terminally unsubstituted OP_nH's do not fold into a regular helical geometry. Taking advantage of optical resolution by chiral HPLC, we reveal that long-chain oligomers such as OP₂₄Br undergo a very slow helical inversion at 298 K, $t_{1/2}$ = 5.5 h. Interestingly, perfect helical folding of OP_nR is accompanied by changes in electrochemical properties. These achievements cast aside any concen that *o*-phenylene oligomers are too dynamic^{2,3} and allow them to be categorized as a unique class of well-behaved, fully characterized foldamers⁹ with many potential applications.

ASSOCIATED CONTENT

S Supporting Information

Synthesis and characterization of selected OP_nR . This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

fukushima@res.titech.ac.jp; aida@macro.t.u-tokyo.ac.jp Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by KAKENHI (21350108 for T.F. and 23750223 for S.A.). We thank Prof. S. Hiraoka (The University of Tokyo) for helpful discussion.

REFERENCES

(1) (a) Wittig, G.; Lehmann, G. Chem. Ber. 1957, 90, 875.
 (b) Winkler, H. J. S.; Wittig, G. J. Org. Chem. 1963, 28, 1733.
 (c) Wittig, G.; Klar, G. Liebigs Ann. Chem. 1967, 704, 91. (d) Blake, A. J.; Cooke, P. A.; Doyle, K. J.; Gair, S.; Simpkins, N. S. Tetrahedron Lett. 1998, 39, 9093. (e) Ormsby, J. L.; Black, T. D.; Hilton, C. L.; Bharat; King, B. T. Tetrahedron 2008, 64, 11370.

(2) (a) He, J.; Crase, J. L.; Wadumethrige, S. H.; Thakur, K.; Dai, L.; Zou, S.; Rathore, R.; Hartley, C. S. J. Am. Chem. Soc. 2010, 39, 13848.
(b) Hartley, C. S.; He, J. J. Org. Chem. 2010, 75, 8627. (c) Mathew, S. M.; Hartley, C. S. Macromolecules 2011, 44, 8425. (d) Hartley, C. S. J. Org. Chem. 2011, 76, 9188. (e) He, J.; Mathew, S. M.; Cornett, S. D.; Grundy, S. C.; Hartley, C. S. Org. Biomol. Chem. 2012, 10, 3398.

(3) Ohta, E.; Sato, H.; Ando, S.; Kosaka, A.; Fukushima, T.; Hashizume, D.; Yamasaki, M.; Hasegawa, K.; Muraoka, A.; Ushiyama, H.; Yamashita, K.; Aida, T. *Nature Chem.* **2011**, *3*, 68.

(4) Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525.

(5) (a) Gutowsky, H. S.; Holum, C. H. J. Chem. Phys. 1956, 25, 1228.
(b) Pons, M.; Millet, O. Prog. Nucl. Magn. Reson. Spectrosc. 2001, 38, 267.

(6) (a) Delsuc, N.; Kawanami, T.; Lefeuvre, J.; Shundo, A.; Ihara, H.; Takafuji, M.; Huc, I. ChemPhysChem 2008, 9, 1882. (b) Furche, F.; Ahlrichs, R.; Wachsmann, C.; Weber, E.; Sobanski, A.; Vögtle, F.; Grimme, S. J. Am. Chem. Soc. 2000, 122, 1717. (c) Ito, Y.; Kojima, Y.; Murakami, M.; Suginome, M. Bull. Chem. Soc. Jpn. 1997, 70, 2801.
(d) Okamoto, Y.; Mohri, H.; Nakano, T.; Hatada, K. J. Am. Chem. Soc. 1989, 111, 5952. (e) Ute, K.; Hirose, K.; Kashimoto, H.; Hatada, K.; Vogl, O. Polym. J. 1993, 25, 1175. (f) Kim, Y. H.; Tishbee, A.; Gil-Av, E. Science 1981, 213, 1379. (g) Mikeš, F.; Boshart, G.; Gil-Av, E. J. Chem. Soc., Chem. Commun. 1976, 99. (h) Nolte, R. J. M.; Van Beijnen, A. J. M.; Drenth, W. J. Am. Chem. Soc. 1974, 96, 5932.

(7) Conformational behaviors of OP_nR (n > 4) in CH₃OH/water (7/ 3 v/v; eluent for chiral HPLC) were unavailable because their very low solubilities in this solvent did not allow for NMR spectroscopy.

(8) Oxidation of $OP_{10}CO_2Bn$ in CH_2Cl_2 with $(p-BrC_6H_4)_3N^{\bullet+}SbCl_6^-$ (see ref 3) and subsequent reduction of the generated radical cation in CH_3CN with Zn powder resulted in quantitative recovery of $OP_{10}CO_2Bn$.

(9) (a) Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science
1997, 277, 1793. (b) Prince, R. B.; Barnes, S. A.; Moore, J. S. J. Am. Chem. Soc. 2000, 122, 2758. (c) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893. (d) Berl, V.; Huc, I.; Khoury, R. G.; Lehn, J.-M. Chem. Eur. J. 2001, 7, 2810.
(e) Huc, I. Eur. J. Org. Chem. 2004, 17. (f) Stone, M. T.; Heemstra, J. M.; Moore, J. S. Acc. Chem. Res. 2006, 39, 11. (g) Waki, M.; Abe, H.; Inouye, M. Chem. Eur. J. 2006, 12, 7839. (h) Hu, Z.-Q.; Hu, H.-Y.; Chen, C.-F. J. Org. Chem. 2006, 71, 1131. (i) Waki, M.; Abe, H.; Inouye, M. Angew. Chem., Int. Ed. 2007, 46, 3059. (j) Yashima, E.; Maeda, K.; Iida, H.; Furusho, F.; Nagai, K. Chem. Rev. 2009, 109, 6102.